22 research outputs found

    Improved Techniques for Adversarial Discriminative Domain Adaptation

    Get PDF
    Adversarial discriminative domain adaptation (ADDA) is an efficient framework for unsupervised domain adaptation in image classification, where the source and target domains are assumed to have the same classes, but no labels are available for the target domain. We investigate whether we can improve performance of ADDA with a new framework and new loss formulations. Following the framework of semi-supervised GANs, we first extend the discriminator output over the source classes, in order to model the joint distribution over domain and task. We thus leverage on the distribution over the source encoder posteriors (which is fixed during adversarial training) and propose maximum mean discrepancy (MMD) and reconstruction-based loss functions for aligning the target encoder distribution to the source domain. We compare and provide a comprehensive analysis of how our framework and loss formulations extend over simple multi-class extensions of ADDA and other discriminative variants of semi-supervised GANs. In addition, we introduce various forms of regularization for stabilizing training, including treating the discriminator as a denoising autoencoder and regularizing the target encoder with source examples to reduce overfitting under a contraction mapping (i.e., when the target per-class distributions are contracting during alignment with the source). Finally, we validate our framework on standard domain adaptation datasets, such as SVHN and MNIST. We also examine how our framework benefits recognition problems based on modalities that lack training data, by introducing and evaluating on a neuromorphic vision sensing (NVS) sign language recognition dataset, where the source and target domains constitute emulated and real neuromorphic spike events respectively. Our results on all datasets show that our proposal competes or outperforms the state-of-the-art in unsupervised domain adaptation.Comment: To appear in IEEE Transactions on Image Processin

    Video Classification With CNNs: Using The Codec As A Spatio-Temporal Activity Sensor

    Get PDF
    We investigate video classification via a two-stream convolutional neural network (CNN) design that directly ingests information extracted from compressed video bitstreams. Our approach begins with the observation that all modern video codecs divide the input frames into macroblocks (MBs). We demonstrate that selective access to MB motion vector (MV) information within compressed video bitstreams can also provide for selective, motion-adaptive, MB pixel decoding (a.k.a., MB texture decoding). This in turn allows for the derivation of spatio-temporal video activity regions at extremely high speed in comparison to conventional full-frame decoding followed by optical flow estimation. In order to evaluate the accuracy of a video classification framework based on such activity data, we independently train two CNN architectures on MB texture and MV correspondences and then fuse their scores to derive the final classification of each test video. Evaluation on two standard datasets shows that the proposed approach is competitive to the best two-stream video classification approaches found in the literature. At the same time: (i) a CPU-based realization of our MV extraction is over 977 times faster than GPU-based optical flow methods; (ii) selective decoding is up to 12 times faster than full-frame decoding; (iii) our proposed spatial and temporal CNNs perform inference at 5 to 49 times lower cloud computing cost than the fastest methods from the literature.Comment: Accepted in IEEE Transactions on Circuits and Systems for Video Technology. Extension of ICIP 2017 conference pape

    Rate-Accuracy Trade-Off In Video Classification With Deep Convolutional Neural Networks

    Get PDF
    Advanced video classification systems decode video frames to derive the necessary texture and motion representations for ingestion and analysis by spatio-temporal deep convolutional neural networks (CNNs). However, when considering visual Internet-of-Things applications, surveillance systems and semantic crawlers of large video repositories, the video capture and the CNN-based semantic analysis parts do not tend to be co-located. This necessitates the transport of compressed video over networks and incurs significant overhead in bandwidth and energy consumption, thereby significantly undermining the deployment potential of such systems. In this paper, we investigate the trade-off between the encoding bitrate and the achievable accuracy of CNN-based video classification models that directly ingest AVC/H.264 and HEVC encoded videos. Instead of retaining entire compressed video bitstreams and applying complex optical flow calculations prior to CNN processing, we only retain motion vector and select texture information at significantly-reduced bitrates and apply no additional processing prior to CNN ingestion. Based on three CNN architectures and two action recognition datasets, we achieve 11%-94% saving in bitrate with marginal effect on classification accuracy. A model-based selection between multiple CNNs increases these savings further, to the point where, if up to 7% loss of accuracy can be tolerated, video classification can take place with as little as 3 kbps for the transport of the required compressed video information to the system implementing the CNN models

    From Pixels to Spikes: Efficient Multimodal Learning in the Presence of Domain Shift

    Get PDF
    Computer vision aims to provide computers with a conceptual understanding of images or video by learning a high-level representation. This representation is typically derived from the pixel domain (i.e., RGB channels) for tasks such as image classification or action recognition. In this thesis, we explore how RGB inputs can either be pre-processed or supplemented with other compressed visual modalities, in order to improve the accuracy-complexity tradeoff for various computer vision tasks. Beginning with RGB-domain data only, we propose a multi-level, Voronoi based spatial partitioning of images, which are individually processed by a convolutional neural network (CNN), to improve the scale invariance of the embedding. We combine this with a novel and efficient approach for optimal bit allocation within the quantized cell representations. We evaluate this proposal on the content-based image retrieval task, which constitutes finding similar images in a dataset to a given query. We then move to the more challenging domain of action recognition, where a video sequence is classified according to its constituent action. In this case, we demonstrate how the RGB modality can be supplemented with a flow modality, comprising motion vectors extracted directly from the video codec. The motion vectors (MVs) are used both as input to a CNN and as an activity sensor for providing selective macroblock (MB) decoding of RGB frames instead of full-frame decoding. We independently train two CNNs on RGB and MV correspondences and then fuse their scores during inference, demonstrating faster end-to-end processing and competitive classification accuracy to recent work. In order to explore the use of more efficient sensing modalities, we replace the MV stream with a neuromorphic vision sensing (NVS) stream for action recognition. NVS hardware mimics the biological retina and operates with substantially lower power and at significantly higher sampling rates than conventional active pixel sensing (APS) cameras. Due to the lack of training data in this domain, we generate emulated NVS frames directly from consecutive RGB frames and use these to train a teacher-student framework that additionally leverages on the abundance of optical flow training data. In the final part of this thesis, we introduce a novel unsupervised domain adaptation method for further minimizing the domain shift between emulated (source) and real (target) NVS data domains

    Deep-learning based precoding techniques for next-generation video compression

    Get PDF
    Several research groups worldwide are currently investigating how deep learning may advance the state-of-the-art in image and video coding. An open question is how to make deep neural networks work in conjunction with existing (and upcoming) video codecs, such as MPEG AVC/H.264, HEVC, VVC, Google VP9 and AOMedia AV1, as well as existing container and transport formats. Such compatibility is a crucial aspect, as the video content industry and hardware manufacturers are expected to remain committed to supporting these standards for the foreseeable future. We propose deep neural networks as precoding components for current and future codec ecosystems. In our current deployments for DASH/HLS adaptive streaming, this comprises downscaling neural networks. Precoding via deep learning allows for full compatibility to current and future codec and transport standards while providing for significant savings. Our results with HD content show that 23%-43% rate reduction takes place under a range of state-of-the-art video codec implementations. The use of precoding can also lead to significant encoding complexity reduction, which is essential for the cloud deployment of complex encoders like AV1 and MPEG VVC. Therefore, beyond bitrate saving, deep-learning based precoding may reduce the required cloud resources for video transcoding and make cloud-based solutions competitive or superior to state-of-the-art captive deployments

    Deep Video Precoding

    Get PDF
    Several groups worldwide are currently investigating how deep learning may advance the state-of-the-art in image and video coding. An open question is how to make deep neural networks work in conjunction with existing (and upcoming) video codecs, such as MPEG H.264/AVC, H.265/HEVC, VVC, Google VP9 and AOMedia AV1, AV2, as well as existing container and transport formats, without imposing any changes at the client side. Such compatibility is a crucial aspect when it comes to practical deployment, especially when considering the fact that the video content industry and hardware manufacturers are expected to remain committed to supporting these standards for the foreseeable future. We propose to use deep neural networks as precoders for current and future video codecs and adaptive video streaming systems. In our current design, the core precoding component comprises a cascaded structure of downscaling neural networks that operates during video encoding, prior to transmission. This is coupled with a precoding mode selection algorithm for each independently-decodable stream segment, which adjusts the downscaling factor according to scene characteristics, the utilized encoder, and the desired bitrate and encoding configuration. Our framework is compatible with all current and future codec and transport standards, as our deep precoding network structure is trained in conjunction with linear upscaling filters (e.g., the bilinear filter), which are supported by all web video players. Extensive evaluation on FHD (1080p) and UHD (2160p) content and with widely-used H.264/AVC, H.265/HEVC and VP9 encoders, as well as a preliminary evaluation with the current test model of VVC (v.6.2rc1), shows that coupling such standards with the proposed deep video precoding allows for 8% to 52% rate reduction under encoding configurations and bitrates suitable for video-on-demand adaptive streaming systems. The use of precoding can also lead to encoding complexity reduction, which is essential for cost-effective cloud deployment of complex encoders like H.265/HEVC, VP9 and VVC, especially when considering the prominence of high-resolution adaptive video streaming

    Graph-Based Spatio-Temporal Feature Learning for Neuromorphic Vision Sensing

    Get PDF
    Neuromorphic vision sensing (NVS) devices represent visual information as sequences of asynchronous discrete events (a.k.a., “spikes”) in response to changes in scene reflectance. Unlike conventional active pixel sensing (APS), NVS allows for significantly higher event sampling rates at substantially increased energy efficiency and robustness to illumination changes. However, feature representation for NVS is far behind its APS-based counterparts, resulting in lower performance in high-level computer vision tasks. To fully utilize its sparse and asynchronous nature, we propose a compact graph representation for NVS, which allows for end-to-end learning with graph convolution neural networks. We couple this with a novel end-to-end feature learning framework that accommodates both appearance-based and motion-based tasks. The core of our framework comprises a spatial feature learning module, which utilizes residual-graph convolutional neural networks (RG-CNN), for end-to-end learning of appearance-based features directly from graphs. We extend this with our proposed Graph2Grid block and temporal feature learning module for efficiently modelling temporal dependencies over multiple graphs and a long temporal extent. We show how our framework can be configured for object classification, action recognition and action similarity labeling. Importantly, our approach preserves the spatial and temporal coherence of spike events, while requiring less computation and memory. The experimental validation shows that our proposed framework outperforms all recent methods on standard datasets. Finally, to address the absence of large real-world NVS datasets for complex recognition tasks, we introduce, evaluate and make available the American Sign Language letters (ASL-DVS), as well as human action dataset (UCF101-DVS, HMDB51-DVS and ASLAN-DVS)

    Domain-Specific Fusion Of Objective Video Quality Metrics

    Get PDF
    Video processing algorithms like video upscaling, denoising, and compression are now increasingly optimized for perceptual quality metrics instead of signal distortion. This means that they may score well for metrics like video multi-method assessment fusion (VMAF), but this may be because of metric overfitting. This imposes the need for costly subjective quality assessments that cannot scale to large datasets and large parameter explorations. We propose a methodology that fuses multiple quality metrics based on small scale subjective testing in order to unlock their use at scale for specific application domains of interest. This is achieved by employing pseudo-random sampling of the resolution, quality range and test video content available, which is initially guided by quality metrics in order to cover the quality range useful to each application. The selected samples then undergo a subjective test, such as ITU-T P.910 absolute categorical rating, with the results of the test postprocessed and used as the means to derive the best combination of multiple objective metrics using support vector regression. We showcase the benefits of this approach in two applications: video encoding with and without perceptual preprocessing, and deep video denoising & upscaling of compressed content. For both applications, the derived fusion of metrics allows for a more robust alignment to mean opinion scores than a perceptually-uninformed combination of the original metrics themselves. The dataset and code is available at https://github.com/isize-tech/VideoQualityFusion

    Graph-based Spatial-temporal Feature Learning for Neuromorphic Vision Sensing

    Full text link
    Neuromorphic vision sensing (NVS)\ devices represent visual information as sequences of asynchronous discrete events (a.k.a., "spikes") in response to changes in scene reflectance. Unlike conventional active pixel sensing (APS), NVS allows for significantly higher event sampling rates at substantially increased energy efficiency and robustness to illumination changes. However, feature representation for NVS is far behind its APS-based counterparts, resulting in lower performance in high-level computer vision tasks. To fully utilize its sparse and asynchronous nature, we propose a compact graph representation for NVS, which allows for end-to-end learning with graph convolution neural networks. We couple this with a novel end-to-end feature learning framework that accommodates both appearance-based and motion-based tasks. The core of our framework comprises a spatial feature learning module, which utilizes residual-graph convolutional neural networks (RG-CNN), for end-to-end learning of appearance-based features directly from graphs. We extend this with our proposed Graph2Grid block and temporal feature learning module for efficiently modelling temporal dependencies over multiple graphs and a long temporal extent. We show how our framework can be configured for object classification, action recognition and action similarity labeling. Importantly, our approach preserves the spatial and temporal coherence of spike events, while requiring less computation and memory. The experimental validation shows that our proposed framework outperforms all recent methods on standard datasets. Finally, to address the absence of large real-world NVS datasets for complex recognition tasks, we introduce, evaluate and make available the American Sign Language letters (ASL-DVS), as well as human action dataset (UCF101-DVS, HMDB51-DVS and ASLAN-DVS).Comment: 16 pages, 5 figures. This work is a journal extension of our ICCV'19 paper arXiv:1908.0664
    corecore